出版社を探す

地球環境

燃料電池自動車の開発と材料・部品《普及版》

監:宮田清藏

紙版

内容紹介

燃料電池を構成する、触媒・電解質膜・ガス拡散層などの材料・部品を詳述し、燃料電池自動車に不可欠な駆動システム、高圧容器、軽量化素材および、環境負荷をかけない水素エネルギーシステムも解説した一冊

目次

【総論編】
第1章 燃料電池自動車の開発と材料・部品の進歩
1 はじめに
2 燃料自動車とは
2.1 燃料電池の種類と発電メカニズム
3 固体高分子形燃料電池
3.1 アノード触媒
3.2 電解質
3.3 カソード触媒
3.4 MEA
3.5 ロールによるMEA
3.6 新しい触媒
4 NEDOの成果発表会
4.1 山梨大学グループの研究成果発表
4.2 同志社大学グループの研究成果発表
4.3 東工大グループの研究成果発表
4.4 横浜国大グループの研究成果発表
4.5 技術研究組合FC-Cubic長谷川博士の研究成果発表

第2章 燃料電池自動車市場の将来展望
1 燃料電池自動車の実用化の現状
2 燃料電池自動車の市場予測
3 燃料電池自動車・水素ステーションの普及目標
4 トヨタ自動車による特許公開のインパクト
5 結語

第3章 燃料電池の研究開発状況と自動車への応用
1 燃料電池自動車の市販開始と[水素社会]の幕開け
2 燃料電池注目の背景 ~地球環境問題・エネルギー問題と自動車業界の大きな環境変化~
3 政府の「次世代自動車戦略2010」と「エネルギー基本計画」(2010 年)
4 2014 年4 月11 日に閣議決定された新「エネルギー基本計画」
4.1 考えられているエネルギー源
4.1.1 非化石エネルギー
4.1.2 化石燃料
4.1.3 水素エネルギー
4.2 今後のエネルギー源のベストミックスのあり方
4.3 次世代自動車等の環境性能に特に優れた自動車の普及
5 政府の「水素・燃料電池戦略ロードマップ」(2014 年6 月)
5.1 わが国の置かれている状況
5.2 水素の果たし得る役割
6 燃料電池の特徴と動作原理
6.1 燃料電池の特徴
6.2 燃料電池の動作原理
6.3 燃料としての水素
7 主な燃料電池の開発現況と用途
7.1 固体高分子形燃料電池(PEFC)
7.2 固体酸化物形燃料電池(SOFC)
8 燃料電池自動車とは
9 燃料電池自動車の主要部品
9.1 燃料電池システム
9.2 FC スタックと昇圧コンバーター
9.3 高圧水素タンク
10 燃料電池自動車の世界の技術開発競争
11 わが国の燃料電池自動車の市場投入に向けた取り組み
12 燃料電池(FC)と燃料電池自動車
12.1 PEFC の実用化・普及に向けての課題
13 まとめ

第4章 GMの燃料電池自動車
1 はじめに
2 水素燃料電池自動車について
2.1 パワートレーンとしての位置づけ
3 これまでのGMの水素燃料電池車の取り組み
3.1 水素燃料電池自動車の意義
4 商用化に向けての挑戦
4.1 死の谷 Valley of death
4.2 ホンダとの共同開発
4.3 サプライヤーへの期待
5 最後に

第5章 韓国における燃料電池自動車の開発状況

【燃料電池と材料・部品編】
第6章 燃料電池触媒のメカニズム解明
1 はじめに
2 実走行下の燃料電池Pt/Cカソード触媒の反応機構
3 Pt/Cカソード触媒のPtナノ粒子表面の電位依存変化
4 PEFC Pt/Cカソード触媒の電位変化過程の構造速度論とORR活性因子
5 おわりに

第7章 フッ素系プロトン伝導膜(電解質膜)
1 はじめに
1.1 燃料電池自動車とスタックの課題
1.2 電解質膜に求められる特性と課題
2 フッ素系電解質膜の構造・特性・課題
2.1 イオンクラスター構造とプロトン伝導度
2.2 膨潤性と物理的耐久性
2.3 化学構造と化学耐久性
2.4 電解質膜構造とガス透過性
3 トレードオフ解消への取り組み―Goreにおける開発状況―
3.1 含水率管理による出力と物理的耐久性の向上
3.2 出力と物理耐久性の確保
3.3 出力と化学耐久の確保
3.4 出力とガス透過のトレードオフ解消
4 おわりに

第8章 無機系プロトン伝導膜
1 はじめに
2 電解質を作製するためのゾル・ゲル法
3 細孔特性とプロトン伝導
4 イオン液体を媒体にしたプロトン伝導体
5 まとめ

第9章 燃料電池自動車の開発と材料 ―金属セパレータ―
1 はじめに
2 本研究の背景と目的
3 Niを含まないフェライト系ステンレスの窒素中熱処理
3.1 耐食性評価
3.2 導電性評価
3.3 表面硬度評価
3.4 格子構造評価
4 窒素中熱処理による耐食性発現のメカニズム
4.1 表面元素分析(蛍光X線、XPS)
4.2 断面観察(SEM)
5 JARIセルによる連続発電試験
6 まとめ

第10章 MEA(膜電極接合体)
1 MEAの定義と種類
2 CCM(Catalyst Coated Membrane)vs. GDE(Gas Diffusion Electrode)
3 三相界面の概念
4 MEA作成プロセス

第11章 新規めっき法による腐食耐性の改善
1 はじめに
2 超臨界二酸化炭素を用いためっき法(SNP法)
2.1 SNP法の概念と方法
2.2 SNP法による高品質皮膜形成
3 フォーム状電解質を用いためっき法
3.1 フォームめっきの概念と方法
3.2 フォームめっきによるピンホール除去および耐腐食性改善
3.3 フォームめっきによる結晶成長の制御
4 おわりに

【燃料電池自動車と材料・部品編】
第12章 FCV用駆動システムとFCスタックシステム制御技術
1 FCV用駆動システムとFCスタックシステム制御技術

第13章 FCVドライブ用パワーエレクトロニクス技術
1 はじめに
2 電力変換
3 電力変換の基本:スイッチング
4 チョッパ
4.1 降圧チョッパ:抵抗負荷
4.2 降圧チョッパ:誘導性負荷
4.3 チョッパの出力電圧制御:PWM制御
4.4 昇圧チョッパ
4.5 FCV用PAM制御昇圧チョッパ
4.6 2/4象限チョッパ
5 インバータ
5.1 回路構成と動作の基本
5.2 過変調PWM制御と1パルスモード

第14章 高圧ガス容器の種類
1 はじめに
2 水素の供給プロセス
3 各種の高圧水素容器
3.1 各種の高圧ガス容器の要求仕様
3.2 FCV搭載用の高圧ガス複合容器の構造・構成材料
3.3 水素ステーション用の高圧ガス容器の構造・構成材料
4 各種の高圧容器の製造プロセス
4.1 FCV搭載用 Type 3およびType 4容器の構造及び製造プロセス
4.2 水素ステーション用Type 1およびType 2容器の構造及び製造プロセス

第15章 FCV搭載用および水素ステーション用の高圧容器の要求仕様
1 はじめに
2 FCV搭載用Type 3およびType 4 CFPP複合容器への要求仕様
2.1 FCVの燃料システム
2.2 各種の試験項目とその目的・概念
2.3 70MPa 圧縮水素自動車燃料装置用容器の技術基準(KHK S0128)
3 FCV搭載用Type 3 及びType 4 CFRP複合容器の設計上の留意点
3.1 CFRP層の設計
3.2 Type 3 ライナ用 アルミニュウム合金(A6061-T6)
3.3 Type 4 ライナ用プラスティックの性能と課題
4 本格普及に向けて水素ステーションの低コスト化へのNEDOの取組
4.1 ガイドライン案の策定
4.2 技術開発への取組
4.3 Type 4複合容器の開発
4.4 アルミ合金ライナType 3複合容器の開発
4.5 スチールライナ複合容器(Type 2容器)の開発
5 海外の技術基準の動向
6 まとめ

第16章 高圧水素ガスシール用ゴム材料
1 緒言
2 ゴム材料の高圧水素曝露時の挙動
3 ブリスタ破壊と水素侵入量および材料強度との関係
4 高圧水素加減圧によるOリングの耐久性評価
5 結言

第17章 CFRP複合容器
1 はじめに
2 タイプ3複合容器の安全性
2.1 容器の破裂を未然に防ぐ
2.2 水素ガスを外に漏らさない
3 タイプ3複合容器の製造方法
3.1 ライナー製造
3.1.1 スピニング加工
3.1.2 熱処理
3.1.3 ねじ切り加工
3.2 容器製造
3.2.1 ワインディング
3.2.2 樹脂硬化
3.2.3 自緊処理
4 水素ステーションコストの低減に向けて
4.1 ステーション関連
4.1.1 CFRP蓄圧器による基礎工事および保持部材の簡素化
4.1.2 CFRP蓄圧器による設置スペースの低減
4.1.3 CFRP蓄圧器を用いてのモジュール化による設計費および現地工事費の低減
4.2 蓄圧器関連
4.2.1 高強度アルミライナーによるCFRP材料の削減
5 水素社会におけるCFRP複合容器の可能性

第18章 水素ステーション用高圧鋼製蓄圧器
1 はじめに
2 鋼製水素蓄圧器に用いる素材
2.1 使用可能な高強度低合金鋼
2.2 高強度低合金鋼の安全性評価
3 鋼製水素蓄圧器の設計
4 製造および保安検査における安全性の確保
5 ストレート型鋼製蓄圧器の特徴
6 おわりに

第19章 水素吸蔵合金を用いたタンク
1 はじめに
2 燃料電池自動車用水素吸蔵合金タンク
3 燃料電池潜水艇
4 燃料電池小型移動体
5 その他の水素貯蔵タンク
6 おわりに

第20章 自動車におけるCFRPの現状と動向
1 CFRPへの期待
1.1 エコカーへの取り組み
1.2 エコカーと軽量化
1.3 軽量材料CFRPの特徴と期待
2 自動車用CFRPの現状
3 自動車用CFRPの今後
3.1 CFの需要と供給
3.2 技術開発
3.2.1 熱硬化性CFRP
3.2.2 熱可塑性CFRP
3.3 ポピュラー化
3.3.1 リサイクル
3.3.2 カーボンニュートラル(植物由来材料化)
3.3.3 CFRPならではの設計
4 まとめ

【水素エネルギーシステム編】
第21章 スマートコミュニティの創造と水素社会の実現
1 ベストミックスの実現とスマートコミュニティ
2 6つの改革
3 分散型エネルギーと自動車の電化
4 水素社会の実現

第22章 水素活用社会の展望
1 水素活用への高い位置づけ
2 水素活用の意義と課題
3 欧州で盛んな「パワー・トゥ・ガス」とは何か
4 エネルギー構造全体を変えるポテンシャル

第23章 水素ステーション
1 岩谷の水素に関する取組の歴史
2 日本における水素需要
3 岩谷の液水への取り組み
4 我が国の水素ステーション整備計画
5 岩谷の水素ステーションへの取り組み状況
6 今後の課題

第24章 石油精製と水素
1 はじめに
2 製油所の装置構成
3 製油所からの水素製造
3.1 接触改質装置
3.2 水素製造装置
4 製油所の水素製造余力
5 オフガス水素の回収
6 製油所における水素の貯蔵
7 国内製油所がエネルギー水素供給に貢献する可能性

第25章 褐炭からのCO2フリー水素サプライチェーン
1 はじめに
2 水素チェーンの概念
3 商用規模水素チェーンの実現可能性検討
4 商用チェーンの水素コスト試算
5 水素インフラ設備の開発

第26章 PSA法
1 水素PSAの歴史
2 吸着分離プロセスの特徴
2.1 吸着を利用した気体分離方法の比較
2.2 PSAに用いられる吸着剤の種類と性質
2.3 吸着剤の選定
2.4 PSA装置の構成
3 水素PSA装置の概要
3.1 主な水素源
3.2 代表的な水素精製方法
3.3 水素PSAの運転パターン
4 当社の水素PSA紹介
4.1 納入実績
4.2 特徴
4.2.1 吸着剤
4.2.2 運転プロセス
4.2.3 運転レート
4.3 装置性能
5 おわりに

第27章 水素製造技術と水素ステーションへの展開
1 はじめに
2 スチームリフォーミングについて
3 小型水素製造装置の開発
4 水素ステーション用水素製造装置(HyGeia-A)の開発
5 下水バイオガス利用水素ステーションの実証
6 あとがき

第28章 高濃度CO耐性アノード触媒
1 燃料電池システムとCO2の排出削減効果
2 現在の都市ガス改質系
3 次世代の高濃度CO耐性アノード触媒に求められる性能
4 COの電気化学酸化除去
5 リガンド効果について
6 リガンド効果と電気化学の組み合わせ
7 PtとRuの分散性の制御と触媒反応設計
8 おわりに

第29章 純水素製造用水素透過膜
1 はじめに
2 水素分離膜素材
3 パラジウム系膜
3.1 合金組成と水素透過性
3.2 水素透過機構と速度式
4 複合膜化
4.1 作製方法
4.2 水素透過速度
5 高純度水素製造用の膜改質反応器
5.1 実用化レベルの膜反応器
5.2 膜反応器の優位性
6 おわりに

第30章 水素貯蔵材料開発動向
1 はじめに
2 水素貯蔵技術の物質の三態による分類
3 気体による水素貯蔵輸送
4 液体による水素貯蔵
5 水素貯蔵材料による水素貯蔵輸送
6 水素貯蔵材料を用いた水素の車上搭載
7 燃料電池自動車用水素貯蔵材料の開発の現状
8 結び

第31章 鉄鋼材料の水素脆化と高圧水素機器の強度設計法
1 はじめに
2 引張特性に及ぼす水素の影響
3 疲労き裂進展特性に及ぼす水素の影響
4 水素助長疲労き裂継続前進機構
5 高圧水素機器に使用可能な鋼種の変遷
6 水素の影響のある材料の強度設計法
7 高圧水素機器に関する海外規格

著者略歴

監:宮田清藏
宮田清藏 電気通信大学
小川幸裕 (株)野村総合研究所 
草川紀久 高分子環境情報研究所 
佐藤正人 ゼネラルモーターズ(GM) 
Gyu-Wan, Im  CMC International KOREA
岩澤康裕 電気通信大学 
鈴木健之 日本ゴア(株)
野上正行 (公財)豊田理化学研究所 
相馬憲一 長岡技術科学大学 
堤泰行 エフシー開発(株);茨城大学
臼井博明 東京農工大学 
坂本俊之 東海大学
内藤治夫 岐阜大学
高野俊夫 JFEコンテイナー(株) 
西村伸 九州大学
東條千太 サムテック(株) 
荒島裕信 (株)日本製鋼所 
伊藤秀明 (株)日本製鋼所 
影山裕史 金沢工業大学 
柏木孝夫 東京工業大学 
橘川武郎 東京理科大学
八隅定夫 岩谷産業(株) 

ISBN:9784781316420
出版社:シーエムシー出版
判型:B5
ページ数:297ページ
定価:5300円(本体)
発行年月日:2022年09月
発売日:2022年09月09日
国際分類コード【Thema(シーマ)】 1:TRC